Weighted Tree Automata I.– A Kleene theorem for wta over semirings

1

Zoltán Fülöp University of Szeged Department of Foundations of Computer Science fulop@inf.u-szeged.hu

November 3, 2009

Contents

- Trees, tree automata
- Semirings, tree series
- Weighted tree automata, recognizable tree series
- Rational operations, rational tree series
- Kleene theorem: recognizable iff rational
- References

Trees (= terms)

Ranked alphabet: $(\Sigma, \operatorname{rank})$ with $\operatorname{rank} : \Sigma \to \mathbb{N}$ $\Sigma^{(k)} = \{ \sigma \in \Sigma \mid \operatorname{rank}(\sigma) = k \}$

The set of trees (terms) over Σ and a set Z is the smallest set U satisfying:

(i) $\Sigma^{(0)} \cup Z \subseteq U$, (ii) if $k \ge 1$, $\sigma \in \Sigma^{(k)}$, $t_1, \ldots, t_k \in T_{\Sigma}(Z)$, then $\sigma(t_1, \ldots, t_k) \in U$.

We denote this set by $T_{\Sigma}(Z)$

Note: $T_{\Sigma}(Z) = \emptyset$ iff $\Sigma^{(0)} \cup Z = \emptyset$.

Tree language : $L \subseteq T_{\Sigma}(Z)$ (or: $L : T_{\Sigma}(Z) \rightarrow \{0, 1\}$).

Trees (= terms) Example: $\Sigma = \{\sigma^{(2)}, \gamma^{(1)}, \alpha^{(0)}\}, Z = \emptyset$

 $t_1 = \sigma(\sigma(\gamma(\alpha), \alpha), \gamma(\alpha))$ $t_2 = \sigma(\gamma(\alpha), \sigma(\alpha, \gamma(\alpha)))$

Terms (= trees)

Positions in trees:

pos : $T_{\Sigma}(Z) \to \mathcal{P}(\mathbb{N}^*)$ such that, for every $t \in T_{\Sigma}(Z)$,

- (i) if $t \in (\Sigma^{(0)} \cup Z)$, then $pos(t) = \{\varepsilon\}$
- (ii) if $t = \sigma(t_1, \ldots, t_k)$, then
 - $pos(t) = \{\varepsilon\} \cup \{iw \mid 1 \le i \le k, w \in pos(t_i)\}.$

The label of a tree $t \in T_{\Sigma}(Z)$ at position w is denoted by t(w). The height of a tree is denoted be height(t). Trees (= terms)

 $pos(t_1) = \{\varepsilon, 1, 11, 111, 12, 2, 21\} \qquad pos(t_2) = \{\varepsilon, 1, 11, 2, 21, 22, 221\}$ $t_1(\varepsilon) = \sigma, t_1(11) = \gamma, t_1(12) = \alpha$ $t_2(2) = \sigma, t_2(22) = \gamma$

Syntax

A tree automaton (over Σ and Z) is a tuple $M = (Q, \Sigma, Z, F, \delta, \nu)$, where

- *Q* is a finite set (*states*),
- Σ is a ranked alphabet (*input ranked alphabet*),
- Z is a finite set (variables),
- $F \subseteq Q$ is a set (*final states*), and
- δ is a family $(\delta_k | k \ge 0)$ of mappings, where $\delta_k \subseteq Q^k \times \Sigma^{(k)} \times Q$ (*transitions*),
- $\nu: Z \to \mathcal{P}(Q)$ is a mapping (the variate assignment).

Note: a transition has the form $(q_1, \ldots, q_k, \sigma, q)$.

Semantics

 $M = (Q, \Sigma, Z, F, \delta, \nu)$ a tree automaton, $t \in T_{\Sigma}(Z)$

- a run of M on t is a mapping $r : pos(t) \to Q$ such that for every $w \in pos(t)$ we have

- if t(w) = z, for some $z \in Z$, then $r(w) \in \nu(z)$,
- otherwise (if $t(w) = \sigma$ for some $\sigma \in \Sigma^{(k)}, k \ge 0$), then $(r(w1), \ldots, r(wk), t(w), r(w)) \in \delta_k$
- a run r on t is successful if $r(\varepsilon) \in F$
- the set of successful runs of M on t is $R_M(t)$

The tree language recognized by M is

 $L_M = \{ t \in T_{\Sigma}(Z) \mid R_M(t) \neq \emptyset \}.$

Example

 $\Sigma = \{\sigma^{(2)}, \gamma^{(1)}, \alpha^{(0)}\}, Z = \emptyset, \text{ the tree language}$ $L = \{s \in T_{\Sigma} \mid \sigma(\bullet, \alpha) \text{ occurs in } s\} \text{ is recognizable}$

Let $M = (Q, \Sigma, F, \delta)$, where

- $Q = \{\perp, q_{\alpha}, q_{ok}\},\$
- $F = \{q_{ok}\},$
- - $\delta_0:(lpha,ot),(lpha,q_lpha)$,
 - δ_2 : $(\perp, q_\alpha, \sigma, q_{ok}), (\perp, q_{ok}, \sigma, q_{ok}), (q_{ok}, \perp, \sigma, q_{ok}), (\perp, \perp, \sigma, \perp),$
 - $\delta_1: (q_{ok}, \gamma, q_{ok}), (\perp, \gamma, \perp).$

Then $L_M = L$.

Example

A successful run.

A not successful run.

Example

A not successful run.

A not successful run.

Semirings

Semiring : $(K, +, \cdot, 0, 1)$

- (K, +, 0) is a commutative monoid,
- $(K, \cdot, 1)$ is a monoid,

and for every
$$a, b, c \in K$$
:
 $(a+b) \cdot c = (a \cdot c) + (b \cdot c)$
 $a \cdot (b+c) = (a \cdot b) + (a \cdot c)$
 $a \cdot 0 = 0 \cdot a = 0.$

K is commutative if $(K, \cdot, 1)$ is a commutative monoid.

Examples :

- Boolean semiring : $\mathbb{B} = (\{0,1\}, \lor, \land, 0, 1)$
- semiring of natural numbers :
- tropical semiring :
- arctic semiring :

Trop =
$$(\mathbb{N} \cup \{\infty\}, min, +, \infty, 0)$$

 $\mathbb{N} = (\mathbb{N}, +, \cdot, 0, 1)$

Arct =
$$(\mathbb{N} \cup \{-\infty\}, max, +, -\infty, 0)$$

Tree series

(Tree language : $L: T_{\Sigma}(Z) \rightarrow \{0,1\}$)

Tree series : $S : T_{\Sigma}(Z) \to K$, where $(K, +, \cdot, 0, 1)$ is a semiring

Examples of tree series:

height : $T_{\Sigma} \to \mathbb{N}$, in <u>Arct</u> = $(\mathbb{N} \cup \{-\infty\}, \max, +, -\infty, 0)$ size_{σ} : $T_{\Sigma} \to \mathbb{N}$, in $\underline{\mathbb{N}} = (\mathbb{N}, +, \cdot, 0, 1)$ size : $T_{\Sigma} \to \mathbb{N}$, in $\underline{\mathbb{N}} = (\mathbb{N}, +, \cdot, 0, 1)$ $\#_{\sigma(\bullet, \alpha)} : T_{\Sigma} \to \mathbb{N}$, in $\underline{\mathbb{N}} = (\mathbb{N}, +, \cdot, 0, 1)$ shortest_{α} : $T_{\Sigma} \to \mathbb{N}$, in <u>Trop</u> = $(\mathbb{N} \cup \{-\infty\}, \min, +, -\infty, 0)$ yield : $T_{\Sigma} \to \mathcal{P}(\Sigma^*)$, in Lang_{Σ} = $(\mathcal{P}(\Sigma^*), \cup, \cdot, \emptyset, \{\varepsilon\})$ pos : $T_{\Sigma} \to \mathcal{P}(\mathbb{N}^*)$, in Lang_{\mathbb{N}}

Weighted tree automata (wta) over semirings

Syntax

A wta (over Σ , Z and K) is a system $M = (Q, \Sigma, Z, K, F, \delta, \nu)$, where

- *K* is a commutative semiring,
- $F: Q \rightarrow K$ is the root weight,
- $\delta = (\delta_k \mid k \ge 0)$ is the family of transition mappings, where $\delta_k : Q^k \times \Sigma^{(k)} \times Q \to K$,
- $\nu: Z \times Q \rightarrow K$ is the variable assignment.

Note: $\delta(q_1, \ldots, q_k, \sigma, q) \in K$ is the weight of the transition $(q_1, \ldots, q_k, \sigma, q)$.

Semantics

- $M = (Q, \Sigma, Z, K, F, \delta,
 u)$ a wta, $t \in T_{\Sigma}(Z)$
- a run of M on t is a mapping $r: pos(t) \rightarrow Q$
- the set of runs of M on t is $R_M(t)$
- for $w \in pos(t)$, the weight wt(t, r, w) of w in t under r
 - if t(w) = z for some $z \in Z$, then $wt(t, r, w) = \nu(z, r(w))$
 - otherwise (if $t(w) = \sigma$ for some $\sigma \in \Sigma^{(k)}, k \ge 0$) wt $(t, r, w) = \delta_k(r(w1), \dots, r(wk), t(w), r(w))$
 - the weight of r is $wt(t, r) = \prod_{w \in pos(t)} wt(t, r, w)$.

The tree series $S_M : T_{\Sigma}(Z) \to K$ recognized by M is defined by

$$S_M(t) = \sum_{r \in R_M(t)} \operatorname{wt}(t, r) \cdot F(r(\varepsilon)).$$

Example

 $\Sigma = \{\sigma^{(2)}, \gamma^{(1)}, \alpha^{(0)}\}, Z = \emptyset$, the semiring is $\mathbb{N} = (\mathbb{N}, +, \cdot, 0, 1)$

The tree series $\#_{\sigma(\bullet,\alpha)}: T_{\Sigma} \to \mathbb{N}$ is recognizable.

Let $M = (Q, \Sigma, \mathbb{N}, F, \delta)$ the wta, where

- $Q = \{\perp, q_\alpha, q_{ok}\},\$
- $F(\perp) = 0, F(q_{\alpha}) = 0, F(q_{ok}) = 1$,

• -
$$\delta_0(\alpha, \perp) = \delta_0(\alpha, q_\alpha) = 1$$

- $\delta_2(\perp, q_\alpha, \sigma, q_{ok}) = \delta_2(\perp, q_{ok}, \sigma, q_{ok}) = \delta_2(q_{ok}, \perp, \sigma, q_{ok}) = \delta_2(\perp, \perp, \sigma, \perp) = 1,$
- $\delta_1(q_{ok}, \gamma, q_{ok}) = \delta_1(\perp, \gamma, \perp) = 1$

Then $S_M = \#_{\sigma(\bullet,\alpha)}$.

Example

 $\Sigma = \{\sigma^{(2)}, \alpha^{(0)}\}$, the is a semiring $\operatorname{Arct} = (\mathbb{N} \cup \{-\infty\}, max, +, -\infty, 0)$

The wta $M = (Q, \Sigma, \text{Arct}, F, \delta)$ recognizes the tree series height, where

- $Q = \{p_1, p_2\},$
- $F(p_1) = 0$ and $F(p_2) = -\infty$.

Moreover, let

$$\begin{split} \delta_0(\alpha, p_1) &= \delta_0(\alpha, p_2) &= 0, \\ \delta_2(p_1, p_2, \sigma, p_1) &= \delta_2(p_2, p_1, \sigma, p_1) &= 1, \\ \delta_2(p_2, p_2, \sigma, p_2) &= 0, \end{split}$$

and for every other transition (q_1, q_2, σ, q) we have $\delta_2(q_1, q_2, \sigma, q) = -\infty$.

Then S_M = height.

Tree automata = wta over the Boolean semiring \mathbb{B}

 $\mathbb{B} = (\{0,1\}, \lor, \land, 0, 1)$ is the Boolean semiring

A wta (over Σ , Z and B) has the form $M = (Q, \Sigma, Z, B, F, \delta, \nu)$, where

- $F: Q \rightarrow \{0, 1\}$ is the root weight,
- $\delta = (\delta_k \mid k \ge 0)$ is a family of transition mappings, where $\delta_k : Q^k \times \Sigma^{(k)} \times Q \to \{0, 1\},$
- $\nu: Z \times Q \rightarrow \{0, 1\}$ is the variable assignment.

 $t \in T_{\Sigma}(Z)$ is a tree, $r : pos(t) \rightarrow Q$ is a run on t

The weight of r is $wt(t, r) = \prod_{w \in pos(t)} wt(t, r, w)$.

The tree series $S_M : T_{\Sigma}(Z) \to \{0, 1\}$ recognized by M is defined by

$$S_M(t) = \sum_{r \in R_M(t)} \operatorname{wt}(t, r) \cdot F(r(\varepsilon)).$$

We denote the class of tree series recognizable by wta over Σ , Z and K by

 $\operatorname{Rec}(\Sigma, Z, K).$

Tree series

For a tree series $S : T_{\Sigma}(Z) \to K$ and $t \in T_{\Sigma}(Z)$, we write (S, t) for S(t). We write S in the form $S = \sum_{t \in T_{\Sigma}(Z)} (S, t) \cdot t$.

The set of tree series over Σ , Z, and K is denoted by $K\langle\!\langle T_{\Sigma}(Z) \rangle\!\rangle$.

The support of S is $supp(S) = \{t \in T_{\Sigma}(Z) \mid (S, t) \neq 0\}.$

The tree series S is *polynomial* if supp(S) is finite.

We write a polynomial tree series S in the form $S = a_1.t_1 + ... + a_n.t_n$, where $supp(S) = \{t_1, ..., t_n\}$ and $(S, t_i) = a_i$.

The set of polynomial tree series over Σ , Z, and K is denoted by $K\langle T_{\Sigma}(Z)\rangle$.

Constant tree series: $\exists (a \in K) : (S, t) = a$ for all $t \in T_{\Sigma}(Z)$; it is also denoted by \tilde{a} .

Operations on trees series

K is a (commutative) semiring.

Let $a \in K$, and $S, T \in K\langle\!\langle T_{\Sigma}(Z) \rangle\!\rangle$

- scalar multiplication: $(aS, t) = a \cdot (S, t)$
- sum: (S + T, t) = (S, t) + (T, t)

for $t \in T_{\Sigma}(Z)$.

Let $\sigma \in \Sigma^{(k)}, k \geq 0$, and $S_1, \ldots, S_k \in K\langle\!\langle T_{\Sigma}(Z) \rangle\!\rangle$

• top concatenation: $(top_{\sigma}(S_1, \ldots, S_k), t) = (S_1, t_1) \cdot \ldots \cdot (S_k, t_k)$ if $t = \sigma(t_1, \ldots, t_k)$ and $(top_{\sigma}(S_1, \ldots, S_k), t) = 0$ otherwise.

Note: $top_{\alpha} = 1.\alpha$ for $\alpha \in \Sigma^{(0)}$.

Operations on trees series

Let $t \in T_{\Sigma}(Z)$ and $S, T \in K \langle\!\langle T_{\Sigma}(Z) \rangle\!\rangle$

• *z*-concatenation: $t \circ_z T$

$$t \circ_z T = \begin{cases} T & \text{if } t = z \\ 1.z' & \text{if } t = z' \neq z \\ top_{\sigma}(t_1 \circ_z T, \dots, t_k \circ_z T) & \text{if } t = \sigma(t_1, \dots, t_k) \end{cases}$$

• and
$$S \circ_z T = \sum_{t \in T_{\Sigma}(Z)} (S, t)(t \circ_z T)$$

• the *m*th *z* iteration: $S_z^0 = \widetilde{0}$ and $S_z^{m+1} = S_z^m \circ_z S + 1.z$

Operations on trees series

A tree series $S \in K\langle\!\langle T_{\Sigma}(Z) \rangle\!\rangle$ is *z*-proper, if (S, z) = 0.

If S is z-proper, then $(S_z^{m+1}, t) = (S_z^m, t)$ for any $m \ge \text{height}(t) + 1$ and $t \in T_{\Sigma}(Z)$.

For $S \in K\langle\!\langle T_{\Sigma}(Z) \rangle\!\rangle$ we define the *z*-Kleene star S_z^* of *S* as follows: if *S* is *z*-proper, then $(S_z^*, t) = (S_z^{\text{height}(t)+1}, t)$, otherwise $S_z^* = \tilde{0}$.

Rational (regular) operations: scalar multiplication, sum, top_{σ} , ($\sigma \in \Sigma$), *z*-concatenation, and *z*-Kleene star ($z \in Z$).

Rational expressions and their semantics

The set of rational tree series expressions over Σ , Z and K, denoted by $\operatorname{RatExp}(\Sigma, Z, K)$, is the smallest set R which satisfies Conditions (1)-(6). For every $\eta \in \operatorname{RatExp}(\Sigma, Z, K)$ we define $[\![\eta]\!] \in K\langle\!\langle T_{\Sigma}(Z) \rangle\!\rangle$ simultaneously.

- 1. For every $z \in Z$, the expression $z \in R$, and $[\![z]\!] = 1.z$.
- 2. For every $k \ge 0$, $\sigma \in \Sigma^{(k)}$, and $\eta_1, \ldots, \eta_k \in R$, the expression $\sigma(\eta_1, \ldots, \eta_k) \in R$ and $[\![\sigma(\eta_1, \ldots, \eta_k)]\!] = \operatorname{top}_{\sigma}([\![\eta_1]\!], \ldots, [\![\eta_k]\!]).$
- 3. For every $\eta \in R$ and $a \in K$, the expression $(a\eta) \in R$ and $\llbracket (a\eta) \rrbracket = a \llbracket \eta \rrbracket$.
- 4. For every $\eta_1, \eta_2 \in R$, the expression $(\eta_1 + \eta_2) \in R$ and $[(\eta_1 + \eta_2)] = [\eta_1] + [\eta_2].$
- 5. For every $\eta_1, \eta_2 \in R$ and $z \in Z$, the expression $(\eta_1 \circ_z \eta_2) \in R$ and $\llbracket (\eta_1 \circ_z \eta_2) \rrbracket = \llbracket \eta_1 \rrbracket \circ_z \llbracket \eta_2 \rrbracket$.
- 6. For every $\eta \in R$ and $z \in Z$, the expression $(\eta_z^*) \in R$ and $\llbracket(\eta_z^*)\rrbracket = \llbracket\eta\rrbracket_z^*$.

Rational tree series

A tree series $S \in K\langle\!\langle T_{\Sigma}(Z) \rangle\!\rangle$ is a rational (over Σ, Z and K) if there is an $\eta \in \operatorname{RatExp}(\Sigma, Z, K)$ such that $S = \llbracket \eta \rrbracket$. The class of all rational tree series over Σ, Z and K is denoted by $\operatorname{Rat}(\Sigma, Z, K)$.

Note: every polynomial is a rational tree series (note that $\tilde{0} = [0\alpha]$ for any $\alpha \in \Sigma^{(0)}$). Thus $\operatorname{Rat}(\Sigma, Z, K)$ is the smallest subclass of $K\langle\langle T_{\Sigma}(Z)\rangle\rangle$ that contains $K\langle T_{\Sigma}(Z)\rangle$, and is closed under the rational operations.

Rational tree series

Example

Let $\Sigma = \{\sigma^{(2)}, \gamma^{(1)}, \alpha^{(0)}\}, Z = \{z\}$. We show that $\#_{\sigma(\bullet, \alpha)} \in \operatorname{Rat}(\Sigma, Z, \mathbb{N})$. We define the rational expressions $\eta, \eta_1, \eta_2 \in \operatorname{Rat}\operatorname{Exp}(\Delta, Z, \mathbb{N})$ by

$$\eta = \eta_1 \circ_z \sigma(z, \alpha) \circ_z \eta_2$$

$$\eta_1 = (\gamma(z) + \sigma(\eta_2, z) + \sigma(z, \eta_2))_z^*$$

$$\eta_2 = (\gamma(z) + \sigma(z, z))_z^* \circ_z \alpha$$

It is obvious that $\llbracket \eta_1 \rrbracket, \llbracket \eta_2 \rrbracket \in \mathbb{N} \langle\!\langle T_{\Sigma}(Z) \rangle\!\rangle$ with $\llbracket \eta_1 \rrbracket = 1_{(\mathbb{N}, C_{\Sigma})}$ and $\llbracket \eta_2 \rrbracket = 1_{(\mathbb{N}, T_{\Sigma}(Z))}$. Then $\llbracket \eta \rrbracket|_{T_{\Sigma}} = \#_{\sigma(z, \alpha)}$.

Recognizable \Rightarrow rational

Let $M = (Q, \Sigma, Z, K, F, \delta, \nu)$ a wta with Boolean root weight.

We will show that $S_M \in \operatorname{Rat}(\Sigma, Z \cup Q, K)$.

For every $P \subseteq Q$ and $q \in Q$ we define the tree series $S_M(P,q) \in K \langle\!\langle T_{\Sigma}(Z \cup Q) \rangle\!\rangle$ such that for every $t \in T_{\Sigma}(Z \cup Q)$,

$$(S_M(P,q),t) = \begin{cases} \sum_{r \in R_M^P(t,q)} \operatorname{wt}(t,r) & \text{if } t \in T_{\Sigma}(Z \cup Q) \setminus Q \\ 0 & \text{if } t \in Q \end{cases}$$

where $R_M^P(t,q)$ is the set of all those runs $r \in R_M(t)$ for which (i) $r(\varepsilon) = q$, (ii) $r(w) \in P$ for every $w \in pos(t) \setminus (pos_Q(t) \cup \{\varepsilon\})$, and (iii) r(w) = t(w) for every $w \in pos_Q(t)$.

(Here wt(t, r, w) = 1 if $t(w) \in Q$.)

Recognizable \Rightarrow rational

Lemma 1. Let $P \subseteq Q$, $q \in Q$, and $p \in Q \setminus P$. Then

 $S_M(P \cup \{p\}, q) = S_M(P, q) \circ_p S_M(P, p)_p^*.$

Lemma 2. $S_M = \llbracket \eta \rrbracket |_{T_{\Sigma}(Z)}$ for some $\eta \in \operatorname{Rat}(\Sigma, Z \cup Q, K)$.

We prove by induction on |P| that for every $P \subseteq Q$ and $q \in Q$, the tree series $S_M(P,q)$ is in $\operatorname{Rat}(\Sigma, Z \cup Q, S)$.

For the induction base, i.e., $P = \emptyset$, we have

$$S_M(\emptyset, q) = \sum_{\substack{k \ge 0, \sigma \in \Sigma^{(k)} \\ q_1, \dots, q_k \in Q}} \delta_k(q_1 \dots q_k, \sigma, q) . \sigma(q_1, \dots, q_k),$$

which is a polynomial, and hence $S_M(\emptyset, q)$ is rational. ...

For the induction step, we assume that $S_M(P,q)$ is rational for every $q \in Q$. Now let $p \in Q \setminus P$. Then it follows from the Lemma 1. that also $S_M(P \cup \{p\}, q)$.

Finally

. . .

$$S_M = \sum_{\substack{q \in Q \\ F(q)=1}} (\dots (S_M(Q,q) \circ_{q_1} \widetilde{0}) \circ_{q_2} \widetilde{0} \dots) \circ_{q_n} \widetilde{0}|_{T_{\Sigma}(Z)}.$$

Theorem. $\operatorname{Rec}(\Sigma, Z, K) \subseteq \operatorname{Rat}(\Sigma, \operatorname{fin}, K)|_{T_{\Sigma}(Z)}$.

Rational \Rightarrow recognizable

Facts:

1) Monomials are in $\operatorname{Rec}(\Sigma, Z, K)$

2) $\operatorname{Rec}(\Sigma, Z, K)$ is closed under rational operations. (Many details, commutativity is used!)

Hence $\text{Rec}(\Sigma, Z, K)$ is a class of tree series that contains polynomials and is closed under rational operations.

Theorem. $\operatorname{Rat}(\Sigma, Z, K) \subseteq \operatorname{Rec}(\Sigma, Z, K)$.

Normal form theorems for wta

Input: $M = (Q, \Sigma, Z, K, F, \delta, \nu)$

Output: $M' = (Q', \Sigma, Z, K, F', \delta', \nu)$ such that $S_M = S_{M'}$ and there is a state $q_f \in Q'$ such that

- $F'(q_f) = 1$ and F'(q) = 0 for every $q \neq q_f$,
- if $q_i = q_f$, then $\delta'(q_1, \ldots, q_k, \sigma, q) = 0$.

Construction: $Q' = Q \cup \{q_f\}$, where q_f is a new state.

For every $\sigma \in \Sigma^{(k)}$, $w \in (Q')^k$, and $q \in Q'$, we define

$$\delta'_{k}(w,\sigma,q) = \begin{cases} \delta_{k}(w,\sigma,q) & \text{if } w \in Q^{k}, q \in Q \\ \sum_{q \in Q} \delta_{k}(w,\sigma,q) \cdot F(q) & \text{if } w \in Q^{k}, q = q_{f} \\ 0 & \text{otherwise.} \end{cases}$$

Normal form theorems for wta

Input: $M = (Q, \Sigma, Z, K, F, \delta, \nu), z \in Z$, s.t. S_M is z-proper.

Output: $M' = (Q', \Sigma, Z, K, F', \delta', \nu')$ such that $S_M = S_{M'}$ and there is a state $q_0 \in Q'$ such that

- $\nu(z,q_0) = 1$,
- for every $q_0
 eq q \in Q$: u(z,q) = 0,
- for every $\sigma \in \Sigma^{(k)}$ and $z' \neq z$: $\delta'_k(\ldots, \sigma, q_0) = \nu'(z', q_0) = 0$.

References

- [1] A. Alexandrakis and S. Bozapalidis. Weighted grammars and Kleene's theorem. *Information Processing Letters*, 24(1):1–4, January 1987.
- [2] M. Droste, Chr. Pech, and H. Vogler. A Kleene theorem for weighted tree automata. *Theory Comput. Syst.*, 38:1–38, 2005.
- [3] Z. Ésik and W. Kuich. Formal Tree Series. Journal of Automata, Languages and Combinatorics, 8:219–285, 2003.
- [4] Z. Fülöp, H. Vogler, Weighted tree automata and tree transducers, in: M. Droste, W. Kuich, H. Vogler (Eds.), Handbook of Weighted Automata, Chapter 9, Springer-Verlag 2009.