Weighted Tree Automata I.A Kleene theorem for wta over semirings

Zoltán Fülöp
University of Szeged
Department of Foundations of Computer Science
fulop@inf.u-szeged.hu

November 3, 2009

Contents

- Trees, tree automata
- Semirings, tree series
- Weighted tree automata, recognizable tree series
- Rational operations, rational tree series
- Kleene theorem: recognizable iff rational
- References

Trees (= terms)

Ranked alphabet: (Σ, rank) with rank: $\Sigma \rightarrow \mathbb{N}$
$\Sigma^{(k)}=\{\sigma \in \Sigma \mid \operatorname{rank}(\sigma)=k\}$

The set of trees (terms) over Σ and a set Z is the smallest set U satisfying:
(i) $\Sigma^{(0)} \cup Z \subseteq U$,
(ii) if $k \geq 1, \sigma \in \Sigma^{(k)}, t_{1}, \ldots, t_{k} \in T_{\Sigma}(Z)$, then $\sigma\left(t_{1}, \ldots, t_{k}\right) \in U$.

We denote this set by $T_{\Sigma}(Z)$
Note: $T_{\Sigma}(Z)=\emptyset$ iff $\Sigma^{(0)} \cup Z=\emptyset$.
Tree language : $L \subseteq T_{\Sigma}(Z)$ (or: $L: T_{\Sigma}(Z) \rightarrow\{0,1\}$).

Trees ($=$ terms)

Example: $\Sigma=\left\{\sigma^{(2)}, \gamma^{(1)}, \alpha^{(0)}\right\}, Z=\emptyset$

$$
t_{1}=\sigma(\sigma(\gamma(\alpha), \alpha), \gamma(\alpha))
$$

$$
t_{2}=\sigma(\gamma(\alpha), \sigma(\alpha, \gamma(\alpha)))
$$

Terms ($=$ trees)

Positions in trees:
pos : $T_{\Sigma}(Z) \rightarrow \mathcal{P}\left(\mathbb{N}^{*}\right)$ such that, for every $t \in T_{\Sigma}(Z)$,
(i) if $t \in\left(\Sigma^{(0)} \cup Z\right)$, then $\operatorname{pos}(t)=\{\varepsilon\}$
(ii) if $t=\sigma\left(t_{1}, \ldots, t_{k}\right)$, then

$$
\operatorname{pos}(t)=\{\varepsilon\} \cup\left\{i w \mid 1 \leq i \leq k, w \in \operatorname{pos}\left(t_{i}\right)\right\} .
$$

The label of a tree $t \in T_{\Sigma}(Z)$ at position w is denoted by $t(w)$.
The height of a tree is denoted be height (t).

Trees (= terms)

$$
\begin{aligned}
& \operatorname{pos}\left(t_{1}\right)=\{\varepsilon, 1,11,111,12,2,21\} \\
& t_{1}(\varepsilon)=\sigma, t_{1}(11)=\gamma, t_{1}(12)=\alpha
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{pos}\left(t_{2}\right)=\{\varepsilon, 1,11,2,21,22,221\} \\
& t_{2}(2)=\sigma, t_{2}(22)=\gamma
\end{aligned}
$$

Tree Automata

Syntax

A tree automaton (over Σ and Z) is a tuple $M=(Q, \Sigma, Z, F, \delta, \nu)$, where

- Q is a finite set (states),
- Σ is a ranked alphabet (input ranked alphabet),
- Z is a finite set (variables),
- $F \subseteq Q$ is a set (final states), and
- δ is a family $\left(\delta_{k} \mid k \geq 0\right)$ of mappings, where $\delta_{k} \subseteq Q^{k} \times \Sigma^{(k)} \times Q$ (transitions),
- $\nu: Z \rightarrow \mathcal{P}(Q)$ is a mapping (the variate assignment).

Note: a transition has the form $\left(q_{1}, \ldots, q_{k}, \sigma, q\right)$.

Tree Automata

Semantics

$M=(Q, \Sigma, Z, F, \delta, \nu)$ a tree automaton, $t \in T_{\Sigma}(Z)$

- a run of M on t is a mapping $r: \operatorname{pos}(t) \rightarrow Q$ such that for every $w \in \operatorname{pos}(t)$ we have
- if $t(w)=z$, for some $z \in Z$, then $r(w) \in \nu(z)$,
- otherwise (if $t(w)=\sigma$ for some $\sigma \in \Sigma^{(k)}, k \geq 0$), then $(r(w 1), \ldots, r(w k), t(w), r(w)) \in \delta_{k}$
- a run r on t is successful if $r(\varepsilon) \in F$
- the set of successful runs of M on t is $R_{M}(t)$

The tree language recognized by M is

$$
L_{M}=\left\{t \in T_{\Sigma}(Z) \mid R_{M}(t) \neq \emptyset\right\} .
$$

Tree Automata

Example

$\Sigma=\left\{\sigma^{(2)}, \gamma^{(1)}, \alpha^{(0)}\right\}, Z=\emptyset$, the tree language $L=\left\{s \in T_{\Sigma} \mid \sigma(\bullet, \alpha)\right.$ occurs in $\left.s\right\}$ is recognizable

Let $M=(Q, \Sigma, F, \delta)$, where

- $Q=\left\{\perp, q_{\alpha}, q_{o k}\right\}$,
- $F=\left\{q_{o k}\right\}$,
- - $\delta_{0}:(\alpha, \perp),\left(\alpha, q_{\alpha}\right)$,
- $\delta_{2}:\left(\perp, q_{\alpha}, \sigma, q_{o k}\right),\left(\perp, q_{o k}, \sigma, q_{o k}\right),\left(q_{o k}, \perp, \sigma, q_{o k}\right),(\perp, \perp, \sigma, \perp)$,
- $\delta_{1}:\left(q_{o k}, \gamma, q_{o k}\right),(\perp, \gamma, \perp)$.

Then $L_{M}=L$.

Tree Automata

Example

A successful run.
A not successful run.

Tree Automata

Example

A not successful run.
A not successful run.

Semirings

Semiring : $(K,+, \cdot, 0,1)$

- $(K,+, 0)$ is a commutative monoid,
- $(K, \cdot, 1)$ is a monoid,

$$
\begin{aligned}
\text { and for every } a, b, c \in K: & (a+b) \cdot c=(a \cdot c)+(b \cdot c) \\
& a \cdot(b+c)=(a \cdot b)+(a \cdot c) \\
& a \cdot 0=0 \cdot a=0 .
\end{aligned}
$$

K is commutative if $(K, \cdot, 1)$ is a commutative monoid.

Examples:

- Boolean semiring :
- semiring of natural numbers :
- tropical semiring :
- arctic semiring :

$$
\mathbb{B}=(\{0,1\}, \vee, \wedge, 0,1)
$$

$$
\mathbb{N}=(\mathbb{N},+, \cdot, 0,1)
$$

$$
\text { Trop }=(\mathbb{N} \cup\{\infty\}, \min ,+, \infty, 0)
$$

$$
\operatorname{Arct}=(\mathbb{N} \cup\{-\infty\}, \max ,+,-\infty, 0)
$$

Tree series

(Tree language : $L: T_{\Sigma}(Z) \rightarrow\{0,1\}$)
Tree series : $S: T_{\Sigma}(Z) \rightarrow K$, where $(K,+, \cdot, 0,1)$ is a semiring
Examples of tree series:

$$
\begin{aligned}
& \text { height : } T_{\Sigma} \rightarrow \mathbb{N}, \text { in } \underline{\text { Arct }}=(\mathbb{N} \cup\{-\infty\}, \max ,+,-\infty, 0) \\
& \operatorname{size}_{\sigma}: T_{\Sigma} \rightarrow \mathbb{N}, \text { in } \underline{\mathbb{N}}=(\mathbb{N},+, \cdot, 0,1) \\
& \text { size }: T_{\Sigma} \rightarrow \mathbb{N}, \text { in } \underline{\mathbb{N}}=(\mathbb{N},+, \cdot, 0,1) \\
& \#{ }_{\sigma(\bullet, \alpha)}: T_{\Sigma} \rightarrow \mathbb{N}, \text { in } \underline{\mathbb{N}}=(\mathbb{N},+, \cdot, 0,1) \\
& \text { shortest }{ }_{\alpha}: T_{\Sigma} \rightarrow \mathbb{N}, \text { in } \underline{\operatorname{Trop}}=(\mathbb{N} \cup\{-\infty\}, \min ,+,-\infty, 0) \\
& \text { yield }: T_{\Sigma} \rightarrow \mathcal{P}\left(\Sigma^{*}\right), \text { in } \operatorname{Lang}_{\Sigma}=\left(\mathcal{P}\left(\Sigma^{*}\right), \cup, \cdot \emptyset,\{\varepsilon\}\right) \\
& \operatorname{pos}: T_{\Sigma} \rightarrow \mathcal{P}\left(\mathbb{N}^{*}\right), \text { in } \operatorname{Lang}_{\mathbb{N}} \\
& \operatorname{pos}_{\sigma(\bullet, \alpha)}: T_{\Sigma} \rightarrow \mathcal{P}\left(\mathbb{N}^{*}\right), \text { in } \operatorname{Lang}_{\mathbb{N}}
\end{aligned}
$$

Weighted tree automata (wta) over semirings

Syntax

A wta (over Σ, Z and K) is a system $M=(Q, \Sigma, Z, K, F, \delta, \nu)$, where

- K is a commutative semiring,
- $F: Q \rightarrow K$ is the root weight,
- $\delta=\left(\delta_{k} \mid k \geq 0\right)$ is the family of transition mappings, where
$\delta_{k}: Q^{k} \times \Sigma^{(k)} \times Q \rightarrow K$,
- $\nu: Z \times Q \rightarrow K$ is the variable assignment.

Note: $\delta\left(q_{1}, \ldots, q_{k}, \sigma, q\right) \in K$ is the weight of the transition $\left(q_{1}, \ldots, q_{k}, \sigma, q\right)$.

Wta over semirings

Semantics

$M=(Q, \Sigma, Z, K, F, \delta, \nu)$ a wta, $t \in T_{\Sigma}(Z)$

- a run of M on t is a mapping $r: \operatorname{pos}(t) \rightarrow Q$
- the set of runs of M on t is $R_{M}(t)$
- for $w \in \operatorname{pos}(t)$, the weight $\mathrm{wt}(t, r, w)$ of w in t under r
- if $t(w)=z$ for some $z \in Z$, then $\mathrm{wt}(t, r, w)=\nu(z, r(w))$
- otherwise (if $t(w)=\sigma$ for some $\sigma \in \Sigma^{(k)}, k \geq 0$)

$$
\mathrm{wt}(t, r, w)=\delta_{k}(r(w 1), \ldots, r(w k), t(w), r(w))
$$

- the weight of r is $\mathrm{wt}(t, r)=\prod_{w \in \operatorname{pos}(t)} \mathrm{wt}(t, r, w)$.

The tree series $S_{M}: T_{\Sigma}(Z) \rightarrow K$ recognized by M is defined by

$$
S_{M}(t)=\sum_{r \in R_{M}(t)} \mathrm{wt}(t, r) \cdot F(r(\varepsilon)) .
$$

Wta over semirings

Example

$\Sigma=\left\{\sigma^{(2)}, \gamma^{(1)}, \alpha^{(0)}\right\}, Z=\emptyset$, the semiring is $\mathbb{N}=(\mathbb{N},+, \cdot, 0,1)$
The tree series $\#_{\sigma(\bullet, \alpha)}: T_{\Sigma} \rightarrow \mathbb{N}$ is recognizable.
Let $M=(Q, \Sigma, \mathbb{N}, F, \delta)$ the wta, where

- $Q=\left\{\perp, q_{\alpha}, q_{o k}\right\}$,
- $F(\perp)=0, F\left(q_{\alpha}\right)=0, F\left(q_{o k}\right)=1$,
- $-\delta_{0}(\alpha, \perp)=\delta_{0}\left(\alpha, q_{\alpha}\right)=1$,
- $\delta_{2}\left(\perp, q_{\alpha}, \sigma, q_{o k}\right)=\delta_{2}\left(\perp, q_{o k}, \sigma, q_{o k}\right)=\delta_{2}\left(q_{o k}, \perp, \sigma, q_{o k}\right)=$ $\delta_{2}(\perp, \perp, \sigma, \perp)=1$,
- $\delta_{1}\left(q_{o k}, \gamma, q_{o k}\right)=\delta_{1}(\perp, \gamma, \perp)=1$

Then $S_{M}=\#_{\sigma(\bullet, \alpha)}$.

Wta over semirings

Example

$\Sigma=\left\{\sigma^{(2)}, \alpha^{(0)}\right\}$, the is a semiring Arct $=(\mathbb{N} \cup\{-\infty\}, \max ,+,-\infty, 0)$
The wta $M=(Q, \Sigma, \operatorname{Arct}, F, \delta)$ recognizes the tree series height, where

- $Q=\left\{p_{1}, p_{2}\right\}$,
- $F\left(p_{1}\right)=0$ and $F\left(p_{2}\right)=-\infty$.

Moreover, let

$$
\begin{array}{ll}
\delta_{0}\left(\alpha, p_{1}\right) & =\delta_{0}\left(\alpha, p_{2}\right) \\
\delta_{2}\left(p_{1}, p_{2}, \sigma, p_{1}\right) & =\delta_{2}\left(p_{2}, p_{1}, \sigma, p_{1}\right)=0 \\
\delta_{2}\left(p_{2}, p_{2}, \sigma, p_{2}\right) & =0
\end{array}
$$

and for every other transition $\left(q_{1}, q_{2}, \sigma, q\right)$ we have $\delta_{2}\left(q_{1}, q_{2}, \sigma, q\right)=-\infty$.
Then $S_{M}=$ height .

Tree automata $=$ wta over the Boolean semiring \mathbb{B}
$\mathbb{B}=(\{0,1\}, \vee, \wedge, 0,1)$ is the Boolean semiring
A wta (over Σ, Z and \mathbb{B}) has the form $M=(Q, \Sigma, Z, \mathbb{B}, F, \delta, \nu)$, where

- $F: Q \rightarrow\{0,1\}$ is the root weight,
- $\delta=\left(\delta_{k} \mid k \geq 0\right)$ is a family of transition mappings, where
$\delta_{k}: Q^{k} \times \Sigma^{(k)} \times Q \rightarrow\{0,1\}$,
- $\nu: Z \times Q \rightarrow\{0,1\}$ is the variable assignment.
$t \in T_{\Sigma}(Z)$ is a tree, $r: \operatorname{pos}(t) \rightarrow Q$ is a run on t
The weight of r is $\mathrm{wt}(t, r)=\prod_{w \in \operatorname{pos}(t)} \mathrm{wt}(t, r, w)$.

The tree series $S_{M}: T_{\Sigma}(Z) \rightarrow\{0,1\}$ recognized by M is defined by

$$
S_{M}(t)=\sum_{r \in R_{M}(t)} \mathrm{wt}(t, r) \cdot F(r(\varepsilon))
$$

Wta over semirings

We denote the class of tree series recognizable by wta over Σ, Z and K by

$$
\operatorname{Rec}(\Sigma, Z, K)
$$

Tree series

For a tree series $S: T_{\Sigma}(Z) \rightarrow K$ and $t \in T_{\Sigma}(Z)$, we write (S, t) for $S(t)$.
We write S in the form $S=\sum_{t \in T_{\Sigma}(Z)}(S, t) . t$.
The set of tree series over Σ, Z, and K is denoted by $K\left\langle\left\langle T_{\Sigma}(Z)\right\rangle\right\rangle$.

The support of S is $\operatorname{supp}(S)=\left\{t \in T_{\Sigma}(Z) \mid(S, t) \neq 0\right\}$.
The tree series S is polynomial if $\operatorname{supp}(S)$ is finite.
We write a polynomial tree series S in the form $S=a_{1} \cdot t_{1}+\ldots+a_{n} \cdot t_{n}$, where $\operatorname{supp}(S)=\left\{t_{1}, \ldots, t_{n}\right\}$ and $\left(S, t_{i}\right)=a_{i}$.

The set of polynomial tree series over Σ, Z, and K is denoted by $K\left\langle T_{\Sigma}(Z)\right\rangle$.

Constant tree series: $\exists(a \in K):(S, t)=a$ for all $t \in T_{\Sigma}(Z)$; it is also denoted by \widetilde{a}.

Operations on trees series

K is a (commutative) semiring.
Let $a \in K$, and $S, T \in K\left\langle\left\langle T_{\Sigma}(Z)\right\rangle\right\rangle$

- scalar multiplication: $(a S, t)=a \cdot(S, t)$
- sum: $(S+T, t)=(S, t)+(T, t)$
for $t \in T_{\Sigma}(Z)$.

Let $\sigma \in \Sigma^{(k)}, k \geq 0$, and $S_{1}, \ldots, S_{k} \in K\left\langle\left\langle T_{\Sigma}(Z)\right\rangle\right\rangle$

- top concatenation: $\left(\operatorname{top}_{\sigma}\left(S_{1}, \ldots, S_{k}\right), t\right)=\left(S_{1}, t_{1}\right) \cdot \ldots \cdot\left(S_{k}, t_{k}\right)$ if $t=\sigma\left(t_{1}, \ldots, t_{k}\right)$ and $\left(\operatorname{top}_{\sigma}\left(S_{1}, \ldots, S_{k}\right), t\right)=0$ otherwise.

Note: $\operatorname{top}_{\alpha}=1 . \alpha$ for $\alpha \in \Sigma^{(0)}$.

Operations on trees series

Let $t \in T_{\Sigma}(Z)$ and $S, T \in K\left\langle\left\langle T_{\Sigma}(Z)\right\rangle\right\rangle$

- z-concatenation: $t \circ_{z} T$

$$
t \circ_{z} T= \begin{cases}T & \text { if } t=z \\ 1 . z^{\prime} & \text { if } t=z^{\prime} \neq z \\ \operatorname{top}_{\sigma}\left(t_{1} \circ_{z} T, \ldots, t_{k} \circ_{z} T\right) & \text { if } t=\sigma\left(t_{1}, \ldots, t_{k}\right)\end{cases}
$$

- and $S \circ_{z} T=\sum_{t \in T_{\Sigma}(Z)}(S, t)\left(t \circ_{z} T\right)$
- the m th z iteration: $S_{z}^{0}=\widetilde{0}$ and $S_{z}^{m+1}=S_{z}^{m} \circ_{z} S+1 . z$

Operations on trees series

A tree series $S \in K\left\langle\left\langle T_{\Sigma}(Z)\right\rangle\right.$ is z-proper, if $(S, z)=0$.
If S is z-proper, then $\left(S_{z}^{m+1}, t\right)=\left(S_{z}^{m}, t\right)$ for any $m \geq \operatorname{height}(t)+1$ and $t \in T_{\Sigma}(Z)$.

For $S \in K\left\langle\left\langle T_{\Sigma}(Z)\right\rangle\right\rangle$ we define the z-Kleene star S_{z}^{*} of S as follows: if S is z-proper, then $\left(S_{z}^{*}, t\right)=\left(S_{z}^{\text {height }(t)+1}, t\right)$, otherwise $S_{z}^{*}=\tilde{0}$.

Rational (regular) operations: scalar multiplication, sum, top $_{\sigma},(\sigma \in \Sigma)$, z-concatenation, and z-Kleene star $(z \in Z)$.

Rational expressions and their semantics
The set of rational tree series expressions over Σ, Z and K, denoted by
$\operatorname{RatExp}(\Sigma, Z, K)$, is the smallest set R which satisfies Conditions (1)-(6).
For every $\eta \in \operatorname{RatExp}(\Sigma, Z, K)$ we define $\llbracket \eta \rrbracket \in K\left\langle\left\langle T_{\Sigma}(Z)\right\rangle\right\rangle$ simultaneously.

1. For every $z \in Z$, the expression $z \in R$, and $\llbracket z \rrbracket=1 . z$.
2. For every $k \geq 0, \sigma \in \Sigma^{(k)}$, and $\eta_{1}, \ldots, \eta_{k} \in R$, the expression $\sigma\left(\eta_{1}, \ldots, \eta_{k}\right) \in R$ and $\llbracket \sigma\left(\eta_{1}, \ldots, \eta_{k}\right) \rrbracket=\operatorname{top}_{\sigma}\left(\llbracket \eta_{1} \rrbracket, \ldots, \llbracket \eta_{k} \rrbracket\right)$.
3. For every $\eta \in R$ and $a \in K$, the expression ($a \eta$) $\in R$ and $\llbracket(a \eta) \rrbracket=a \llbracket \eta \rrbracket$.
4. For every $\eta_{1}, \eta_{2} \in R$, the expression $\left(\eta_{1}+\eta_{2}\right) \in R$ and $\llbracket\left(\eta_{1}+\eta_{2}\right) \rrbracket=\llbracket \eta_{1} \rrbracket+\llbracket \eta_{2} \rrbracket$.
5. For every $\eta_{1}, \eta_{2} \in R$ and $z \in Z$, the expression $\left(\eta_{1} \circ_{z} \eta_{2}\right) \in R$ and $\llbracket\left(\eta_{1} \circ_{z} \eta_{2}\right) \rrbracket=\llbracket \eta_{1} \rrbracket \circ_{z} \llbracket \eta_{2} \rrbracket$.
6. For every $\eta \in R$ and $z \in Z$, the expression $\left(\eta_{z}^{*}\right) \in R$ and $\llbracket\left(\eta_{z}^{*}\right) \rrbracket=\llbracket \eta \rrbracket_{z}^{*}$.

Rational tree series

A tree series $S \in K\left\langle\left\langle T_{\Sigma}(Z)\right\rangle\right\rangle$ is a rational (over Σ, Z and K) if there is an $\eta \in \operatorname{RatExp}(\Sigma, Z, K)$ such that $S=\llbracket \eta \rrbracket$. The class of all rational tree series over Σ, Z and K is denoted by $\operatorname{Rat}(\Sigma, Z, K)$.

Note: every polynomial is a rational tree series (note that $\widetilde{0}=\llbracket 0 \alpha \rrbracket$ for any $\left.\alpha \in \Sigma^{(0)}\right)$. Thus $\operatorname{Rat}(\Sigma, Z, K)$ is the smallest subclass of $K\left\langle\left\langle T_{\Sigma}(Z)\right\rangle\right\rangle$ that contains $K\left\langle T_{\Sigma}(Z)\right\rangle$, and is closed under the rational operations.

Rational tree series

Example

Let $\Sigma=\left\{\sigma^{(2)}, \gamma^{(1)}, \alpha^{(0)}\right\}, Z=\{z\}$. We show that $\#_{\sigma(\bullet, \alpha)} \in \operatorname{Rat}(\Sigma, Z, \mathbb{N})$.
We define the rational expressions $\eta, \eta_{1}, \eta_{2} \in \operatorname{RatExp}(\Delta, Z, \mathbb{N})$ by

$$
\begin{aligned}
\eta & =\eta_{1} \circ_{z} \sigma(z, \alpha) \circ_{z} \eta_{2} \\
\eta_{1} & =\left(\gamma(z)+\sigma\left(\eta_{2}, z\right)+\sigma\left(z, \eta_{2}\right)\right)_{z}^{*} \\
\eta_{2} & =(\gamma(z)+\sigma(z, z))_{z}^{*} \circ_{z} \alpha
\end{aligned}
$$

It is obvious that $\llbracket \eta_{1} \rrbracket, \llbracket \eta_{2} \rrbracket \in \mathbb{N}\left\langle\left\langle T_{\Sigma}(Z)\right\rangle\right\rangle$ with $\llbracket \eta_{1} \rrbracket=1_{\left(\mathbb{N}, C_{\Sigma}\right)}$ and $\llbracket \eta_{2} \rrbracket=1_{\left(\mathbb{N}, T_{\Sigma}(Z)\right)}$. Then $\left.\llbracket \eta \rrbracket\right|_{T_{\Sigma}}=\#_{\sigma(z, \alpha)}$.

Recognizable \Rightarrow rational

Let $M=(Q, \Sigma, Z, K, F, \delta, \nu)$ a wta with Boolean root weight.
We will show that $S_{M} \in \operatorname{Rat}(\Sigma, Z \cup Q, K)$.
For every $P \subseteq Q$ and $q \in Q$ we define the tree series
$S_{M}(P, q) \in K\left\langle\left\langle T_{\Sigma}(Z \cup Q)\right\rangle\right\rangle$ such that for every $t \in T_{\Sigma}(Z \cup Q)$,

$$
\left(S_{M}(P, q), t\right)= \begin{cases}\sum_{r \in R_{M}^{P}(t, q)} \mathrm{wt}(t, r) & \text { if } t \in T_{\Sigma}(Z \cup Q) \backslash Q \\ 0 & \text { if } t \in Q\end{cases}
$$

where $R_{M}^{P}(t, q)$ is the set of all those runs $r \in R_{M}(t)$ for which (i)
$r(\varepsilon)=q$, (ii) $r(w) \in P$ for every $w \in \operatorname{pos}(t) \backslash\left(\operatorname{pos}_{Q}(t) \cup\{\varepsilon\}\right)$, and (iii)
$r(w)=t(w)$ for every $w \in \operatorname{pos}_{Q}(t)$.
(Here $\mathrm{wt}(t, r, w)=1$ if $t(w) \in Q$.

Recognizable \Rightarrow rational

Lemma 1. Let $P \subseteq Q, q \in Q$, and $p \in Q \backslash P$. Then

$$
S_{M}(P \cup\{p\}, q)=S_{M}(P, q) \circ_{p} S_{M}(P, p)_{p}^{*} .
$$

Lemma 2. $S_{M}=\left.\llbracket \eta \rrbracket\right|_{T_{\Sigma}(Z)}$ for some $\eta \in \operatorname{Rat}(\Sigma, Z \cup Q, K)$.
We prove by induction on $|P|$ that for every $P \subseteq Q$ and $q \in Q$, the tree series $S_{M}(P, q)$ is in $\operatorname{Rat}(\Sigma, Z \cup Q, S)$.

For the induction base, i.e., $P=\emptyset$, we have

$$
S_{M}(\emptyset, q)=\sum_{\substack{k \geq 0, \sigma \in \Sigma^{(k)} \\ q_{1}, \ldots, q_{k} \in Q}} \delta_{k}\left(q_{1} \ldots q_{k}, \sigma, q\right) \cdot \sigma\left(q_{1}, \ldots, q_{k}\right)
$$

which is a polynomial, and hence $S_{M}(\emptyset, q)$ is rational. ...

Recognizable \Rightarrow rational

For the induction step, we assume that $S_{M}(P, q)$ is rational for every $q \in Q$. Now let $p \in Q \backslash P$. Then it follows from the Lemma 1. that also $S_{M}(P \cup\{p\}, q)$.

Finally

$$
S_{M}=\left.\sum_{\substack{q \in Q \\ F(q)=1}}\left(\ldots\left(S_{M}(Q, q) \circ_{q_{1}} \widetilde{0}\right) \circ_{q_{2}} \widetilde{0} \ldots\right) \circ_{q_{n}} \widetilde{0}\right|_{T_{\Sigma}(Z)} .
$$

Theorem. $\left.\operatorname{Rec}(\Sigma, Z, K) \subseteq \operatorname{Rat}(\Sigma$, fin, $K)\right|_{T_{\Sigma}(Z)}$.

Rational \Rightarrow recognizable

Facts:

1) Monomials are in $\operatorname{Rec}(\Sigma, Z, K)$
2) $\operatorname{Rec}(\Sigma, Z, K)$ is closed under rational operations. (Many details, commutativity is used!)

Hence $\operatorname{Rec}(\Sigma, Z, K)$ is a class of tree series that contains polynomials and is closed under rational operations.

Theorem. $\operatorname{Rat}(\Sigma, Z, K) \subseteq \operatorname{Rec}(\Sigma, Z, K)$.

Normal form theorems for wta
Input: $M=(Q, \Sigma, Z, K, F, \delta, \nu)$
Output: $M^{\prime}=\left(Q^{\prime}, \Sigma, Z, K, F^{\prime}, \delta^{\prime}, \nu\right)$ such that $S_{M}=S_{M^{\prime}}$ and there is a state $q_{f} \in Q^{\prime}$ such that

- $F^{\prime}\left(q_{f}\right)=1$ and $F^{\prime}(q)=0$ for every $q \neq q_{f}$,
- if $q_{i}=q_{f}$, then $\delta^{\prime}\left(q_{1}, \ldots, q_{k}, \sigma, q\right)=0$.

Construction: $Q^{\prime}=Q \cup\left\{q_{f}\right\}$, where q_{f} is a new state.
For every $\sigma \in \Sigma^{(k)}, w \in\left(Q^{\prime}\right)^{k}$, and $q \in Q^{\prime}$, we define

$$
\delta_{k}^{\prime}(w, \sigma, q)= \begin{cases}\delta_{k}(w, \sigma, q) & \text { if } w \in Q^{k}, q \in Q \\ \sum_{q \in Q} \delta_{k}(w, \sigma, q) \cdot F(q) & \text { if } w \in Q^{k}, q=q_{f} \\ 0 & \text { otherwise }\end{cases}
$$

Normal form theorems for wta

Input: $M=(Q, \Sigma, Z, K, F, \delta, \nu), z \in Z$, s.t. S_{M} is z-proper.
Output: $M^{\prime}=\left(Q^{\prime}, \Sigma, Z, K, F^{\prime}, \delta^{\prime}, \nu^{\prime}\right)$ such that $S_{M}=S_{M^{\prime}}$ and there is a state $q_{0} \in Q^{\prime}$ such that

- $\nu\left(z, q_{0}\right)=1$,
- for every $q_{0} \neq q \in Q: \nu(z, q)=0$,
- for every $\sigma \in \Sigma^{(k)}$ and $z^{\prime} \neq z: \delta_{k}^{\prime}\left(\ldots, \sigma, q_{0}\right)=\nu^{\prime}\left(z^{\prime}, q_{0}\right)=0$.

References

[1] A. Alexandrakis and S. Bozapalidis. Weighted grammars and Kleene's theorem. Information Processing Letters, 24(1):1-4, January 1987.
[2] M. Droste, Chr. Pech, and H. Vogler. A Kleene theorem for weighted tree automata. Theory Comput. Syst., 38:1-38, 2005.
[3] Z. Ésik and W. Kuich. Formal Tree Series. Journal of Automata, Languages and Combinatorics, 8:219-285, 2003.
[4] Z. Fülöp, H. Vogler, Weighted tree automata and tree transducers, in: M. Droste, W. Kuich, H. Vogler (Eds.), Handbook of Weighted Automata, Chapter 9, Springer-Verlag 2009.

